Biomimicry of blood-brain barrier models to unravel the pathogenesis of neurotropic virus infection

Yeeun (Helen) Oh Year 2 PhD Student Supervisor: Dr. Siaw Shi Boon

I. Introduction

- 2. Current challenges
- 3. Emerging BBB models

4. Future Directions

The Blood-Brain Barrier (BBB)

- Tightly regulated barrier
- Exchange of crucial ions and molecules between blood vessel and brain
- 3 major cell types framing the BBB
 - I. Endothelial Cells express tight junctions to form physical barrier
 - 2. Pericytes structural support of endothelial cells
 - 3. Astrocytes structural support, maintenance of neuronal functions

Physiological Role of Blood-Brain Barrier

- I. Maintain homeostasis in the brain
 - Tightly regulated concentrations of ions (i.e Ca²⁺, K⁺, Na⁺ for neuronal firing)
 - Regulate crosstalk of multiple signals
- 2. Uptake of essential nutrients
 - Metabolic activities (i.e glucose, vitamins, insulin)
- 3. Protection from pathogens (Viruses, Bacteria, Parasites)

Regulation of Blood-Brain Barrier

- Transport of micromolecules lipid soluble, small molecules
- I. Transcellular transport (Diffusion)
- 2. Paracellular transport

Transport of macromoleculesglucose, amino acids, metabolites, insulin, etc.

- I. Transport proteins
- 2. Transcytosis
- 3. Efflux pumps

Virus-Mediated Blood Brain Barrier Disruption

- I. Passive diffusion
- 2. Endothelial cell infection
- 3. Virus transcytosis
- 4. Cell-associated virus transport (Trojan-Horse mechanism)

Interplay of mechanisms? Sequential events?

5

Current Challenges in Virus-Mediated Blood-Brain Barrier Invasion Studies

- 2. Model human neuropathology
- 3. Mimicking immunological mechanism and vascular structure of BBB
- 4. Lack of screening platforms for potential therapeutic candidates

Emerging Blood Brain Barrier Models to Study Neuro-Invasion of Viruses

2D iPSC-derived blood-brain barrier model

Microfluidic model

· 20000

Brain Microvascular Endothelial Cells (iBMECs) from human PSC cells

8

IMR & DF19: induced pluripotent stem cells

H9: embryonic stem cell

hCMEC: human cardiac microvascular endothelial cells

HUVEC: human umbilical vein endothelial cells

2D Infection Model of iBMEC supports infection of neurotropic virus

Cheng et al., Cell Reports, 2022, <u>doi.org/10.1016/j.celrep.2022.110885</u> <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Emerging Blood Brain Barrier Models to Study Neuro-Invasion of Viruses

2D iPSC-derived blood-brain barrier model

Microfluidic model

Major components of the neurovascular unit (NVU)

Treatment with Omaveloxolone (OMA) decrease viral load in BBB cells

HBME: Human brain microvascular endothelial cells SVGp12: human fetal astrocytes cells

12

Boghdeh et al, Viruses, 2022

BBB integrity preserved and viral load decreased after treatment of OMA

BY

How Well Do Emerging Models Recapitulate the Blood Brain Barrier?

	Advantage	Disadvantage
2D model	 Simple culturing in transwell Mimic tight junctions Successful infection of viruses to model entry 	 Lack vasculature and multicellular environment
Microfluidic model	 Simultaneous observation Integration of vascular fluid flow Aid in drug-screening 	 Complex establishment Further validation and optimization needed

Conclusion: Future direction and takeaways

- Emerging viruses are expected to increase due to environmental factors
 - i.e. SARS-CoV-2
- 2. Most problematic infectious agents are the RNA viruses that have caused multiple outbreaks and public health concerns.
- 3. Drug candidate screening to address the limited treatment of neurotropic viruses

References

- Boghdeh, N. A., Risner, K. H., Barrera, M. D., Britt, C. M., Schaffer, D. K., Alem, F., Brown, J. A., Wikswo, J. P., & Narayanan, A. (2022). Application of a Human Blood Brain Barrier Organ-on-a-Chip Model to Evaluate Small Molecule Effectiveness against Venezuelan Equine Encephalitis Virus. Viruses, 14(12), 2799. https://doi.org/10.3390/v14122799
- Cheng, Y., Medina, A., Yao, Z., Basu, M., Natekar, J. P., Lang, J., . . . Tang, H. (2022). Intrinsic antiviral immunity of barrier cells revealed by an iPSC-derived blood-brain barrier cellular model. *Cell Reports*, 39(9), 110885. <u>doi:https://doi.org/10.1016/j.celrep.2022.110885</u>
- Fu, B.M. (2018). Transport Across the Blood-Brain Barrier. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. <u>https://doi.org/10.1007/978-3-319-96445-4_13</u>
- Kadry, H., Noorani, B. & Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17, 69 (2020). <u>https://doi.org/10.1186/s12987-020-00230-3</u>
- Meyding-Lamadé, U., Craemer, E. & Schnitzler, P. Emerging and re-emerging viruses affecting the nervous system. Neurol. Res. Pract. 1, 20 (2019). <u>https://doi.org/10.1186/s42466-019-0020-6</u>
- Spindler, K. R., & Hsu, T. H. (2012). Viral disruption of the blood-brain barrier. *Trends in microbiology*, 20(6), 282–290. https://doi.org/10.1016/j.tim.2012.03.009
- Wu, D., Chen, Q., Chen, X. et al. The blood-brain barrier: structure, regulation, and drug delivery. Sig Transduct Target Ther **8**, 217 (2023). https://doi.org/10.1038/s41392-023-01481-w